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Abstract

In three-dimensional de Sitter spas%.and anti-de Sitter spadéf, we generalize the classical
Béacklund theorem. Moreover, we obtain explicit forms of Backlund transformations (BTs) in the
Tchebyshev coordinates and investigate the relation of loop group actions and .ﬁl’s in
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1. Introduction

The classical Backlund theord 2] studies the transformation of surfaces with constant
negative curvature in the Euclidean spageby realizing them as the focal surfaces of a
pseudo-spherical line congruence. The integrability theorem says that we can construct a
new surface irk 3 with constant negative curvature from a given one by using the Backlund
transformation (BT in brief).

With the development of the integrable system theory, BT has become an important
method to find the solutions ofintegrable equations, specially soliton equatiofitls&&).

Atthe same time the geometricians also pay attention to the generalization and development
of geometrical content of the Backlund theorf2r9]. In [2], Chern and Terng introduced
W-congruence and discussed BT between affine minimal surfaces in affine geometry. In
[6] Antonowicz presented an analytic form of the affine BT and constructed some new
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affine minimal surfaces in3. In [3-5], Tenenblat and Terng considered the generalization
of Backlund theorem in high dimensional space forms and generalized the sine-Gordon
equation and wave equation. [h6,17], the relation of BTs and loop group actions was
studied. In Lorentzian space forms, the analogue of Backlund theorem was considered in
R?1 (see[7-13,18). It is not clear in the three-dimensional de Sitter spﬁ%end anti-de
Sitter spacer which are important spaces in physics and used as cosmological models in
general relativity. To study, it is an interesting thing both in geometry and in physics.

The aim of this paper is to study the BTs of constant curved surfacﬁsaindHf. Firstly,
we discuss the Backlund congruences (BCs in brief) between surface ins'}‘)atid Hf.
Since there are time-like and space-like surfaces in our scope (according to induced metrics
are either Riemannian or Lorentzian), and the BCs may be either space-like or time-like,
we should separate the BCs into following cases:

1. space-like BC between time-like surface and space-like surfacekinvithl — p2,
2. space-like BC between space-like surface and space-like surfack with + p2,
3. space-like BC between time-like surface and time-like surface kita 1 + p?,
4. time-like BC between time-like surface and time-like surface itk 1 + p2,

whereK is the Gaussian curvature of surface and 0 is a constant.
By using Tchebyshev coordinates for constant curved surfaegarfias 3.7 and 3)8
whenthe ambient spaceﬁ%, the Gauss—Codazzi equations of the surfaces are the following:

1. sine-Laplace equation
Qxx + Qyy = (p? — 1) sina, (1.1)
and sinh-Laplace equation
axx + ayy = (0% — 1) sinha, (1.2)
2. sine-Gordon equation
Oxx — Oty = —(,o2 + 1) sina, (1.3)
and sinh-Gordon equation
Oxx — Oty = —(,02 + 1) sinha, (1.4)
3. cosh-Gordon equation
axy + (02 + 1) cosha = 0. (1.5)
The corresponding BTs of BG4.2)—(1.4)are similar to the classical BT, but the corre-
sponding BT of BC 1 is a transformation between solutions of sine-Laplace equation and
sinh-Laplace equation in general, and which includes the BT between solutions of Laplace
equation whemp = 1.

The paper is organized as follows Section 2ve firstly review the moving frame method
for immersed surfaces iﬁf. Afterwards we generalize the classical Backlund theorem in

Sf and give the four kinds of BCs. I8ection 3we give the explicit forms of BTs in
the Tchebyshev coordinate Hf In Sections 4 and e shall discuss the relation of loop
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group actions and BTs Lﬁf In Section §we study the parallel results such as the Backlund

theorems, irHl3. Throughout this paper, we use the summation convention. We assume that
7,1 € (0, ) andp > 0 are constants and denotes an immersion without umbilic point
in 3 (or HY)

1 1)

2. The frame method for surfaces and Backlund theorems ir$3

Let L* denote the four-dimensional Minkowski space endowed with linear coordi-
nates Ko, X1, X2, X3) and the scalar produ¢t ) given by—X2 + X2 + X2 + X2. The
three-dimensional de Sitter spaS% of constant sectional curvature 1 is defined as the
following hyper-quadric in.*

§3 = (X e LY (X, X) = 1}.

Let M be a simply connected domain ayid M — S'f c L% an immersion, we choose
a local orthonormal framéeg, e1, €2, e3} such thakg = f and{eg, eg) = 1, wheree, e>
are tangent vectors amg is normal toM in Sf. Supposes is either space-like or time-like
vector. Define the dual cofranie?, w?} of {e1, ez} by w'(e;) = 83. (i, j = 1,2), then the
fundamental equations af are

[
i =0

des = —exaeq + w%el + wgeg 1l<i<21<j<3), dez = wéei, (2.1)

deg=df =ole;, de; = —e1wleq + w%ez + a)feg eia)ij +ejw

wherewf is the connection 1—formp§' and wg are the second fundamental form of the
immersion, and; = (ej,e;) = 1 or—1 (1 < j < 3) according to whethes; is either
space-like or time-like.

From d?ej = 0(0 < j < 3), one can obtain the structural equations:

do! = w? A a)% dw? = 0! A a)% elw% Al + 62a)§ Aw? =0, (2.2)
and

dof = —c10’ A w? + w3 A w3 (Gauss equation (2.3)

dol + w3 Aw5 =0,  dw+wiAwi=0 (Codazziequation (2.4)
The two fundamental forms d#f are

I = el(a)l)z + ez(wz)z, Il = —(df, e3) = —ela)la)% - eza)zw%. (2.5)

The eigenvaluek; andk» of thell - I~1 are called the principal curvatures &f.
If e3is time-like, the surface is called space-like surface. Inthiseasee; = —e3 =1,
and we have

w? + w3 =0, a)f = w%, a)g = w% (2.6)
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If e3is space-like, the surface is called time-like surface and we may chegnse) =
—1.Thenes = —ex = ez =1and
a)f = a)%, a)f + w% =0, a)g = w%. (2.7)
From(2.2), we get for both space-like and time-like surfaces
wlAwi’—i—a)z/\wg =0. (2.8)
By Cartan’s lemma, one may sef = hjj', hij = hji (L < i, j < 2). Then for the surface
(either space-like or time-like) the Gaussian curvature is definedu@ybd—elel A w?,
and the Gauss equation can be rewritten as

K =1— det(hj). (2.9

It is easily verified that for space-like surfake= —k1ky, for time-like surfacek = k1ko.
Naturally, as a generalization of classical pseudo-spherical line congruence, we introduce

four kinds of BCs inS3 (or H3). In the following, 1ine” means geodesic of target spatie

(or H3).

Definition 2.1. A line congruence between two surfackisand M* in S3 (or H3) is a
diffeomorphismi : M — M* such that for eacl? € M, the line joiningP andP* = [(P)

is a common tangent line fa/ and M*. The line congruenceé is called a space-like
Béacklund congruence (SBC in brief) (or time-like B&cklund congruence (TBC in brief)) if

(i) the length of line segmemP* = [ is a non-zero constant independentrof
(ii) the tangent vector of lin@P* is space-like (or time-like) vector,
(i) (np,n}) = cis anon-zero constant independentfyfwheren p andny, are normal
to M andM*, respectively.

In fact the above BCs iﬂf could be separated into the following four cases:

(1) SBCI; between time-like surface and space-like surface,
(2) SBCI;, between space-like surface and space-like surface,
(3) SBCI3 between time-like surface and time-like surface,

(4) TBCI4 between time-like surface and time-like surface.

Now we discuss an analogue of classical Backlund theore?iﬁ.in

Theorem 2.2. Let M andM* be two immersed surfaces Hf Letl, : M - M* (1 <

i < 4) be one of the above BCs as Definition 2.1 Then M andM* have the same
constant Gaussian curvature here in(1) K = 1— (cosh?t/sin?) ande = sinht; (2)
K = 1+ (sinh?t/sin?l) andc = — coshr; (3) K = 1+ (sinh?t/sin?l) andc = coshr;
and(4) K = 1+ (sin?t/sinh?)) andc = cosr.

Proof.

Case 1l.Leteg : M — 3 andej : M* — S3 be immersed time-like and space-like
surfaces, respectively. By the definition, égt(or 7) be the space-like unit tangent vector
field of M (or M*) which is tangent of line congruentg then there exist local orthonormal
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frames{e;} and{e}} (0 < i < 3) of M and M*, respectively, such that

eq = cosleg + sinley

SBC Iy el = —.sinleo + cosleg (2.10)
e5 = sinhtez + coshres
e3 = coshrey + sinhreg,
where(er, e1) = —(e2, e2) = (e3, e3) = 1, and(e], e]) = (€5, e5) = —(e3, e3) = L.
Taking the exterior derivative af;, we get
def = —w' sinleg + w! cosle; + (w? cosl + w? sinl)ez + o3 sinles. (2.11)
On the other hand, letting»*!, »*2} be the dual coframe d&;, ¢5}, we have
deg = a)*lef + a)*zeg
= —w*lsinleg + w*! cosle; + w*? sinhtes + w*? coshres. (2.12)
Comparing coefficients afy, e2, ez in (2.11) and (2.12)we have
wt=0l,  ©?sinht = w?cosl + wisinl,  w*?coshr = wisinl. (2.13)
This gives
w?cosl + w? sinl = w?sinl tanhr. (2.14)
By using(2.10) we have
a)i3 = —(e3, de]) = — C;?ST w?, a)§3 = —(e3, de3) = a)g’. (2.15)

By (2.15), (2.8) and (2.13e have

.3 43 cosht , of = cosht ; 5 costPt . .,

1 2 sin! sin/ 1

sin2l
Now the Gausgquation (2.4)mplies thatk* = 1 — ( cosh?z/ sin?l). Note that

_ * H *
eo = cosley — sinlej.

By a similar calculation, we know thatf also has Gaussian curvatufe= 1 — ( cosh?t/
sin?l). This proves the first case of the theorem.

Analogous withCase 1we may proveCases 2 and.Here we need to notice that the
corresponding orthonormal frames are the following:

Case 2.
eg = cosleg + sinleg
SBC I - el = —sinleg + cosle; (2.16)
2. i .
e3 = coshrez 4 sinhtes

e3 = sinhtez + coshres,

Where<el’ el) = <621 €2> = _<e3’ 63) = 11 and<ei9 ei) = (e;, e;) = _<e§’ e;) =1.



284 D. Zuo et al./ Journal of Geometry and Physics 44 (2002) 279-298

(2.17)

Case 3.
ep = cosleg + sinley
. .
e¥ = —sinleg + cosley
SBCIl3:{ 1 _
e5 = coshrez + sinhres
e3 = sinhtez + coshres,
where(e, e1) = —(e2, e2) = (e3, e3) = 1, and(e], e]) = —(e5, e5) = (e3, e3) = 1.

Case 4.leteg : M — Sf andej : M* — Sf be two immersed time-like surfaces. Let
ez (or e3) be the time-like unit tangent vector field &f (or A*) which is tangent of line
congruenceéy, then there exist local orthonormal framigs} and{e} (0 < i < 3) of M

andM*, respectively, such that

eq = coshleg + sinhle;
e] = CoStey + Sinte3

(2.18)

TBC I4: .
e5 = sinhleg + coshle;
e3 = —sinte; + COStes,
where(er, e1) = —(e2, e2) = (e3, e3) = 1, and(e], e]) = —(e3, e5) = (e3, e3) = L.

Taking the exterior derivative ¢2.18)we have
w*? =w?  o"cost = wlcosh + wisinhl,  w*sint = w3sinhi,
and
o' coshl + w3 sinhl = 3 sinh cotr.

By using(2.18) and (2.19)we have

sint
*3 * * 3 *3 * * 1
w:® = (ek, del) = w7, w5 = {e3,des) = ——ow-.
1 = (e3, de7) 1 o~ = (e3, de) sinh
Then
. . . 2
«3, x3_ SINT 3 o _ ST 5 3 SIN"T 41, s2
w A ) = " w3 N\Nw = " W-NANWy, = —————w A
1 2 7 sinht sinh/ 2 sinh?/

SoK* = 1+ (sin?t/sinh?)). Similarly, we havek = 1 + (sin?z/sinh?/).

3. BTsin$3}

3.1. BTs for surfaces i3

(2.19)

(2.20)

(2.21)

In this section, we shall discuss BTs, i.e., the existence of BCs. From the proof of
Theorem 2.2we know the existence of BCs is equivalent to the existence of space-like
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unit vector fielde;. Leteg : M — Sf be an immersed time-like surface. From (2.14) we
consider the following differential system of space-like unit vector figlth Case 1

(deg, e2) coSl + (de1, e2) sinl + (de1, e3) sinl tanht = 0.
Denote
n = w3 sinltanht — w? cosl — ? sinl.
Then the existence ef; is equivalent to thay = 0 is completely integrable. Since

dn = 0? A wisinltanht — o' A w? cosl — dw? sin!

sin/ cosh?t
= K-1 -
cosh?t sin?}

1

)wl/\a)2 mod 7.

Hence d) = 0 (modp)ifand only if K = 1— (cosh?z/ sin?/). By the Frobenius theorem,
we have

Theorem 3.1. Suppose M is an immersed time-like surface Witk 1 — ( cosh?t/ sin?l)
in Sf. Given any unit space-like vectoy € T, M, po € M, which is not a principal
direction. Then there exist a unigque space-like surfa€ewith K and the above SBG
such thati1(pg) = coslpg + sinlvg.

Definition 3.2. Eq. (2.14) »? cos! + w? sinl = w3 sin/ tanhr, is called the BT between
time-like surface and space-like surfacesﬁa

Similar toCase 1we also have the following existence theorems to the other cases.

Theorem 3.3. Suppose M is an immersed space-l{ke time-like surface withk =
1+ (sinh?z/sin?l) in S3. Given any unit space-like vectop € T,,M, po € M, which
is not a principal direction. Then there exist a unique spaceflikgime-like surfaceM*
with K and the above SB (or /3) such thati2(po) (orl3(po)) = coslpg + sinlvg.

Definition 3.4. The equation
w?cosl + w? sinl = wdsinl cotht (3.1)

is called the BT of between space-like (or time-like) surfaceﬁin

Theorem 3.5. Suppose M is an immersed time-like surface Witk 1+ (sin?z/ sinh?/)

in Sf. Given any unit time-like vectavg € T, M, po € M, which is not a principal
direction. Then there exist a unique time-like surfatéwith K and the above TB(G such
thatls(po) = coshlpg + sinhlug.

Definition 3.6. Eqg. (2.20) w!cosh + wsinhl = w3sinhicotz, is called the BT of
between time-like surfaces B’f
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3.2. BTs in the Tchebyshev coordinates

In the following, we give the explicit forms of BTs in the Tchebyshev coordinates. In
Sf we may set up the Tchebyshev coordinates for surfaces analogous with theh? in
[19,20]

Lemma 3.7. Suppose Mis animmersed surfacesfm\/ith constant curvatur& = 1+ p?,
wherep > 0is a constant

(1) If M is space-like, then there exists a local coordinate system) such that
I = cos?Z di? + sin2Z dy2, Il = —pcosesina(dx® —dy?), (3.2)
2 2 2 2
ando satisfies the equation

(2) If M is time-like and the principal curvaturels and k, are real, then there exists a
local coordinate systertx, y) such that

[ = coshzg dx? — sinhzg dy?, Il = pCOSh% sinh%(dx2 —dy?), (3.4)

andu satisfies the equation

(3) If Mis time-like and the principal curvaturdg andk; are imaginary, then there exists
a local coordinate systertx, y) such that

I = dx? + 2 sinha dx dy — dy?, Il = 2p cosho dx dy, (3.6)
andu satisfies the equation

axy + (1 + p?) cosha = 0. (3.7)

With time-like surfaces of positive curvature, an important case for which the principal
curvatures are imaginary, is often missed in some previous papers on BT. In recent paper
[20], the case has been taken up and studied in det&ifth

Lemma 3.8. Suppose Mis animmersed surfacéf»f/vith constant curvatur& = 1— p?,
wherep > 0is a constant

(1) If M is space-likethen there exists a local coordinate systemy) such that
I= coshzg dr? + sinhzg dy2  ll=—p cosh% sinh%(dxz-l—dyz), (3.8)
andu satisfies the equation

oxx + otyy = (,02 — 1) sinha. (3.9
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(2) If M is time-like then there exists a local coordinate systemy) such that
I = cos?Z dx? — sin2Z dy2, Il = pcos— sin = (dx? + dy?), (3.10)
2 2 2 2
andu satisfies the equation
axx + ayy = (p? — 1) sina. (3.12)

Now we shall consider the explicit forms of BTs, i.Egs. (2.14), (2.20) and (3.1 the
Tchebyshev coordinates.

Theorem 3.9. Let M and M* be immersed time-like surface and space-like surfese
spectively inSf. Letly : M — M* be the above SBG. Then

(1) The Tchebyshev coordinates of M aWd correspond undefy,
(2) The BT between EqE.9)and(3.11)is

1 . . a . .« . . o
> sinl(ox — &) = cosl cosi smhz + sinht smE coshz,

1 . - . o . a .«
> sinl(ay + &,) = —cosl sin > coshz + sinht cosE smhz, (3.12)
wherep = coshr/ sinl, @ anda satisfy Eqs(3.9)and(3.11) respectively

Proof. Supposeeg = f : M — Sf is an immersed time-like surface witk = 1 —
(cosh?t/ sin?l) covered by the Tchebyshev coordingte y). By Lemma 3.8 we may
choose the right orthonormal frame figlleb, /11, /12, e3}, whereh; = (1/c0s%)(9/dx),

hy = (1/sin%)(3/dy) and(hy, h1) = 1, (ha, ha) = —1. Let{n*, n?} be the dual coframe
of {h1, ho}, andn{ be the corresponding connection 1-forms. Then we have

nt= COS% dx, n? = sin% dy, n% = %(—&y dx + @, dy),

. a
ni’ =p smz dx = —77%, ng =p COSE dy = n%,

wherep = coshr/ sinl is a constant.
Use the same notation in the prooftieorem 2.2and suppose

e1 = cosh%hl + sinh%hz, e2 = sinh%hl + cosh%hz, (3.13)
wheree1 is the SBC direction. By a direct calculation, we have
1 o o La .o
= cosh— cos—=d sinh—=sin—d
w > 5 x 4 si > i 5 y,
2 Lo a o .« 2 2 1
o= - sth cos; dx — coshE sin dy, o] =1+ 35 dao,

3 a . @ o«
= cosh— sin—dx — sinh—=cos—dy |,
“1 p( 2oy ™ 2 9% y)

w3=p (sinho—zl sin% dx — cosho—zl cos% dy) . (3.14)
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Using(2.13) the fundamental forms a¥#f* are

sinf w3 ’ — cosh?Z dx? + sinh2< dy?
coshr 1) — 2 20

coshr sinl
02wy = ——olw? - w303
sin! coshr

* = —w*tel® -
=—p cosh% sinh%(dx2 + dy?).
By Lemma 3.8we know (1) holds. Substitutin@.14)in (2.14) comparing the coefficients
of dx, dy in (2.14) we get the BT(3.12) O
Similarly to the other cases, we also have the following theorems:

Theorem 3.10. Let M andM* be two immersed space-like surfaceSffnLetlz M — M*
be the above SBG. Then

(1) The Tchebyshev coordinates of M a¥d correspond undeb,
(2) The BT between Eg€3.3)and(3.3)is

1sinl(~ + ay) = cosl cosa sin& + cosh sina cos&

p SO ) = 272 S5 505y

1 o o o o

—sinl(a, = — in— - — h —sin— A
23 I(aty + ay) cosls > 0052 cos rcos2 S > (3.15)

wherep = sinht/sinl, « anda satisfy Eq(3.3).

Theorem 3.11. Let M and M* be two immersed time-like surfaces with real principal
curvatures inSf. Letl3 : M — M* be the above SB@G. Then

(1) The Tchebyshev coordinates of M aWd correspond undets,
(2) The BT between Eg€.5)and(3.5)is

1. e . Y

> sinl(ay + ay) = cosl cosh% smh% + coshr smh% cosh%,

1. . Lo a o . a

> sinl(a, + ax) = — cosl smhz coshz — coshr coshz smhz, (3.16)
wherep = sinht/sinl, « anda satisfy Eq(3.5).

Theorem 3.12.Let M and M* be two immersed time-like surfaces with real principal
curvatures inSf. Letly : M — M* be the above TBG. Then

(1) The Tchebyshev coordinates of M aWd correspond undety.
(2) The BT between Eg&3.5)and(3.5)is

1 . - o . Q Lo 19
> sinhl(oyx 4+ &,) = cosh/ coshE smhz + cost smhz coshE,

1. - L« a o .. a
> sinhl(ay, + &,) = — cosh sth coshE — cost coshi sth, (3.17)

wherep = sint/sinhl, « and& satisfy Eq(3.5).
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Now we discuss the BT between time-like surfaces of positive constant curvature and
imaginary principal curvatures Lﬁf

Theorem 3.13. Let M andM* be two immersed time-like surfaces with imaginary principal
curvatures inSf. Letls : M — M* be the above TBG. Then

(1) The Tchebyshev coordinates of M a¥d correspond undets.
(2) The BT between Eq€3.7)and(3.7)is

oy + 0y _ coshr.-|- cosl sinha —a
2 sinl/ 2
ay —ay  cosl — coshr o+a
= = : cosh , 3.18
2 sinl 2 ( )

wherep = sinht/sinl, ¢ anda satisfy Eq(3.7).
Theorem 3.14. Let M andM * be two immersed time-like surfaces with imaginary principal
curvatures inSf. Letls : M — M* be the above TBG. Then

(1) The Tchebyshev coordinates of M avd correspond undety,
(2) The BT between Eqg€3.7)and(3.7)is

oy — &y  COST — cosh/ cosba +a
2 sinh! 2
ay+a, cosh+cost . o—a
= sinh , 3.19
2 sinhl 2 ( )

wherep = sint/sinhl, « anda satisfy Eq(3.7).

Proof. Supposeeg = f : M — Sf is an immersed time-like surface witki = 1 +

(sint/sinh?l) covered by the Tchebyshev coordingie y). By Lemma 3.7 we may
choose the right orthonormal frame figleb, 1, 42, eg}, where(h, hy) = 1, (ho, hp) =

—1. Let{nt, »?} be the dual coframe df1, 4>}, andn{ be the corresponding connection
1-forms. Then we have

nt = dx + sinhady, n? = cosha dy, r;% = —a,dx = r)%,
ni’ = pcoshady = —n%, ng =dx — psinhady = r)%,

wherep = sint/sinh/ is a constant.
Use the same notation in the prooffdieorem 2.2and suppose
e1 = coshyrhy + sinhyrho, ez = sinhyrhq + coshyrha, (3.20)

wheree; is the TBC direction angr = —(« + @) /2. By a direct calculation, we have
! = coshy dx + sinh(y + @) dy,  ®? = sinhy dx + cosh(y + &) dy,

wi=n2—dy, 5= p(—sinhy dx 4+ cosh(y + &) dy),
w3 = p(coshy dx — sinh(y + &) dy). (3.21)
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Using(2.19) the fundamental forms a#f* are

smhl

<ine @ 3)2 — (0?)? = dx? 4 2 sinha dx dy — dy?,

sinh/ sinh/
1* = w*lwi® + 020l = ——wiwd w'w? = 2p cosha dx dy.
sint sint

By Lemma 3.7we know (1) holds. Substitutin@.21)in (2.20) comparing the coefficients
of dx, dy in (2.20), we get the BT(3.19) Similarly one may prov&heorem 3.13 a

4. Loop group actions and BT between time-like surface and space-like surface

In the rest of the sections, we construct a local action of the group of rational maps from
$2toGL(2, C) onthe space of solutions of*1-flow” of thesl(2, C)-hierarchy and-1-flow
associated t&U(1, 1)/SQ1, 1). We show that the actions of simple elements give local
BTs (Propositions 4.4 and 55By suitable constraints, we describe the relations of loop
group actions and BTs between time-like surface or space-like surfﬁ@e{Tﬂneorems 4.5
and 5.6.

For the BT between space-like surfacesS@ actually it is the BT of sine-Gordon
equation. The relation with loop group actions has been studied by Uhlenbeck and Terng
[16,17] In this section we shall consider the relation of loop group actions and the BT
between time-like surface and space-like surfac%fin

ForEgs. (3.9) and (3.11e introduce complex coordinates(f, y) plane

V=1 _ VpP-1

5 (x +1y), ="

ThenEgs. (3.9) and (3.1Xan be written as real sinh-Laplace equation and real sin-Laplace
equation

ay; = sinha, 4.2)

n= (x —1y). (4.1)

ay; = sina. (4.3)

The BT (3.12)becomes

(o — i), = 2¢ sinh® J;'“, (o +i@); = 2¢ sinh®—

where; = /(cosl +isinht)/(cosl —isinht) € SL.

Proposition 4.1. Supposer is a solution of Eq4.2) and ¢ e S1. Then the following
first-order system is solvable fér

(«—i@), =28 sith ™ L%, (@ +id); =2 sinh ™ (4.4)

Moreovera is a solution of the sinh-Laplace equatioph3).
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Definition 4.2. If « is a solution of sinh-Gordorquation (4.2)then given anyg € R
there is a unique solutiod for Eq. (4.4)such that (0, 0) = cg denoted byB; ¢, (¢) = &
which is called the BT between real sinh-Laplace equation and real sin-Laplace equation.

Notice thatEgs. (4.2) and (4.3)an be obtained in the complex sinh-Laplace equation

¢n;7 = sinhe. (4.5)
Its Lax pair is
o i
oo =ar+ 2 = A,
o
2
_ 1/( coshy sinh¢ _
o lp, == A l=0Wm), 4.6
! (—sinhqﬁ —coshqb) oW (4.6)

wherea = diag(1, —1).

In fact, wheng is real andyp = «, « satisfiesEq. (4.2) When ¢ is purely imagi-
nary and¢ = ia (& is real),a satisfiesEq. (4.3) From the Lax pair, we note that the
complex sinh-Laplacequation (4.5)can be regarded as a-1-flow” equation in the
sl(2, C)-hierarchy defined by = (a/4) € sl(2)} is

up=la,g7tbd, g lgj=u, _lim g0 =1, (4.7)

where

uesl(Z)j:{(o g) :q,reC}.
r

Note that the = 1-flow” in thesl(2, C)-hierarchy(4.7)leaves the submanifolgd = r invari-
antand choosg = r = ¢,/2,(4.7)is reduced to the complex sinh-Laplaaguation (4.5)
On this submanifold, the Lax pair satisfies the following reality condition:

A=) = A, ™ 10(=0T = 0 (4.8)

where

01
T = .
10
In the following we construct alocal action 6€SHL (defined later) on the space of solutions
of the complex sinh-Gordon equations.

Definition 4.3. Let GSHL denote the group of rational mags: $2 — GL(2, C) such
that (1)¢ is holomorphic ak = oo, and (2) there exists a rational functibrsuch thagh
satisfies the reality conditio@.8).
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Givenv = (v1, v2)' € C2andk € C, we define a degree 1 rational map

ax — kaB(v)aB(v) 1

A) =
gv,k( ) N —k

, (4.9)

where B(v) = (v, 1) is non-singular. It is verified that. — k)gy k(1) satisfies the
reality condition(4.8). Sog, 1 (1) € G*SH-and we calg, x (1) a simple element a; *SHL,
Analogous with[17], one may obtain the following proposition.

Proposition 4.4. Letv = (v1, v2)! € C2andk € C. Letu(n, 7) be a local solution of the
“—1-flow’ Eqg. (4.7)on the submanifolg = r and @ be the trivialization at0, 0), where
(n,7) € O1.Letd(n, ) = ®(n, 7, k)~L(v) andB(v) = (v, ~1v). If B(v) is non-singular
then there exists an open subgetc 01 such thatB(9) is non-singular for all(n, #7) € O.
Moreover

(1) @i = aua ! + [¥,ala"t is a solution defined o denoted byi = g, «#u, where
Y (5. ) = —kaB(D)aB(®) .
(2) & = gur(M)Pg;(») is the trivialization ofii.
(3) Y is a solution of
(V)i =Yu — (aua  +[¥,ala" b)Y,
(Y), = ag t(u)bg(u) — Y gL (u)bgu)¥ ~1a, 7yt =Y. (4.10)
Proof. Note tha(4.8)is also the reality condition for22 KW-hierarchy. Hence analogous
with Theorem 13.8 iff17], we may showd = gv,k(k)qbgﬁ_i(k) is holomorphic for 0#£

A € C and the trivialization of;.
On the other hand, we know

ar+i=¢ ;= ga,k¢_1¢ﬁg,{,{ - (ga,k)ﬁg,{,%,

andg; «(A) = (aX + ¥)/(A — k). Therefore
(ar+ @) (ar +Y) = (ar + Y)(ar +u) — Y;.

Comparing the coefficient 6f/ for j = 0, 1, and we have
i=aual+[Y,alat I?ﬁ =Yu—iY.

Substitute the first equation into the second equation, and we get
(V)i =Yu— (@aua l +[¥,ala Y.

Similarly we have

27t M @byl (ah + V) = (ak + V)r~ g M w)bg(w) — 7.

Comparing the coefficient of/ for j = 0, —1, and we obtair()?),7 = ag L(u)bg(u) —
Y g Yu)bgu)Y 1a. O
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Now we describe the connection between the BT aPadifinition 4.2and the action
of GESHL on the space of solutions of the complex sinh-Laplagaation (4.5) Given

0 # k € C and choosé = (cosh(f/2), sinh(f/2))!, and then

i coshf —sinhf
B —sinhf coshf |’
So the first-order systef@.10)for Y becomes
. 1 .
fi = —¢5 + 2k sinh f, fn= % sinh(f + ¢). (4.11)
Write
o O
- 2
U= gyihu = -
P
— 0.
2
Butii = aua ! +[Y¥, a]a—1, hence we have = 2f + ¢. Then we get
L . ) »
ik (¢+¢),7=4ksinh¢2¢.

(¢ = @)y =  sinh——,
« is real, and taking R¢ = —¢/2, theng = 2ilmf is purely
imaginary, we denot¢ = ia. Soa satisfies (4.4) which is the BT of (3.12). Hence we have

Note that if¢p =

the following:
Theorem 4.5. Leta is be solution of E4.2)andcg > 0. Set
o Y
2 .
u=| g . fo=3(ico—a(0,0)).
— 0
2
and? = (cosh(fo/2), sinh(fo/2))". Then
i
o
2
gv,{/Z#M =1 .. )
% g
2

whereq = B; .,(e) and¢ e ST,

5. Loop group actions and BT between time-like surfaces
In this section we investigate the relation of loop group actions and BT between time-like
surfaces with real principal curvatures Saction 3ve have obtained thatthe Gauss equation
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of time-like surface withk = 1+ p? is
Qxx — Qyy = _(pz + 1) Sinhot, (51)
where(x, y) are Tchebyshev coordinates.
Note that if one makes a parameter transformation

1
X =—=(—y), y=——
V14 p? V14 p?
where(s, t) are called asymptotic coordinates. Then (5.1)becomes sinh-Gordon equa-
tion:

ast = Sinha. (5.3)

Hence the BT between time-like surfaces is the BTEqf (5.3) A direct calculation
shows that syster8.16)(or (3.17) becomes

oa+a 1 o—a

(¢ — &)y = 4¢ sinh > (a+&)[:Esinh 5

where
. 1 /coshr + cosl or 1 /cosh + cost
¢= 2V coshr — cosl 2V coshl — cost | °
So we have the following:

Proposition 5.1. Suppose is a solution of Eq5.3)and¢ # Ois a real number. Then the
following first-order system is solvable far

oa+a 1 o—a

(¢ — @)y = 4¢ sinh > (a+&),=zsinh >

(5.4)
Moreover @ is a solution of E(5.3).

Definition 5.2. If « is a solution of sinh-Gordoerquation (5.3)then given anyg € R
there is a unique solutiod for Eq. (5.4)such that (0, 0) = cg denoted byB; ¢, (o) = &
which is called the BT for sinh-Gordon equation.

For sinh-Gordorequation (5.3)its Lax pair is
Qs

0o = . .
cosha sinh
1o, = ar + 21, ote, =i ° * )21 (55)
% 9 4\ —sinha — coshx

2

wherea = diag(i, —i). From Lax pair, we find the sinh-Gordaguation (5.3ould be
derived from the-1-flow associated to the Lorentzian symmetric sgaidel, 1)/SQ(1, 1).
The —1-flow equatior{14,15]associated t&U(1, 1)/SQ1, 1) defined byp = —a/4 is

u; = [a, g tbg), g Yg =u, S_li)n_ﬂoog(s, =1, (5.6)
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whereg : RZ - SQ(1, 1),

e sul, 1t {(0 ”)- GR}
u a0y = ) .
v O

Then the—1-flow equation (5.6jor

Uy
0 -
2
u=| 4
— 0
2

is the sinh-Gordorequation (5.3)In the following, we also construct a simple element
action of G™“ on the space of solutions of the sinh-Gordmuation (5.3)

Definition 5.3. Let O, denote a neighbourhood o6 in $2. G denotes the group of
rational magg : O NC — GL(2, C) such that (1} is a holomorphic map angloco) = I;
(2) g satisfies th&U(1, 1) reality condition:g(1)*Jg(L) = J; (3) o (g(—1)) = g(X), where
o is an involutions on SU(1, 1) denoted by (g) = J(g")"1J1, J = diag(1, —1).

Letz e C andr beJ-projection ofC? onto a complex linear space, i.e/ = 7, where
a* = J7lx*J. Set

A—2Z
&n =7+ ——=U—m). (5.7)
A—2Z

It is easy to check that —  is aJ-projection anc, , (A)*Jg. » (1) = J. Hence we have
Proposition 5.4. g, » € G™? ifand only ifz = —z and7w = 7.

Proof. g.» € G™° & 0(g:x(—1) = gz 2 (1)
N j(gé’n(_k))_lj_l = ng,j,(i)*rl, usingSU(1, 1) reality condition
<:>gz,n(_)\)=gz,n()_‘)<:>Z=_Z’7_[=T[' -

Analogous withProposition 4.4we could obtain the following proposition.

Proposition 5.5. Letu : Oy — sW(1, 1)jﬁ* be a local solution of the-1-flow equation

(5.6), @ the trivialization andg; , a simple element iG™“. V1 and V, denote the image
of J-projectionst and/ — &, respectively. Then there exists an open subset O such

that Vl(x 1) N Va(x, t) = 0for (x, 1) € O. Moreover, lett (x, 1) denote the J-projection
onto V1 (x, ) with respect taC2 = Vi (x, 1) & Va(x, 1). Then

Q) & : 0 — sul, 1)a , defined byii = u + (z — 2)[7, d] is a solution of the-1-flow
equatlon(5.6)denoted byi = g, #u,
(2) @ = g..x(M)Pg, :(3) is the trivialization of,
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(3) 7 is a solution of
(m)s = [, az+u] + (z — 2)[7, al7,
1
() = W((Z — g Ywbgw) — zg  w)bgw)7 + 27 g ) tbgw)),

A =x,  #2=#, 70,0 =m. (5.8)

Now we relate the BT as iefinition 5.2and the action ofG™'° on the space of
solutions of the sinh-Gordoequation (5.3)Given 0# ¢ € R anda*J = Ja = #'J,

then byProposition 5.4g;. » € G™ and is called a simple element6f"°. Hencer is
a J-projection ofC? onto (cosh( f/2), sinh(f/2)) for some functionf (s, 1), i.e.

coshzi — coshi sinhi
5= ; 2 ; 2 ; 2 (5.9)
coshE sinhE — sinhZE
So the first-order systes.8) for 7 becomes
1
fs = —ag + 2¢ sinh f, fi = Z sinh(f + «). (5.10)
Set
0 &
. 2
u=gi7%u &
- 0
2

By Proposition 5.54 = u + 2i¢[7, a]. Hence we havé = —2f — «. Then we get

o+ a N 1  a—a
> (oe—i—a),:Esmh >

which is the BT for the sinh-Gordoequation (5.3)So we have the following:

(¢ — @)y = 4¢ sinh

Theorem 5.6. Leta is a solution of the sinh-Gordon equati@i3)andcg > 0. Set

0o &

u=|, 21| fo=1@00+co.
%
2

and  is the J-projection onto the complex linear subspace spanne@cbgh(fo/2),
sinh(fp/2)). Then

9 &
2
gi{,n#u = & s
s
— 0
2

wherea = B; ,(o) and0 # ¢ € R.
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Remark 5.7. For solving the equations for BTs, the Darboux transformation method has
been used to obtain the explicit formulas of possible solufib®4.8,20] Loop group action
method is also an effective method. But we need Bianchi permutability formulas, similar
to [17], which could be derived by factoring quadratic elements in the rational loop group
GCSHL(G™7) in two ways as a product of two simple elements.

6. Bécklund theorems inH?3

In this section, we shall generalize the classical Backlund theore‘ﬂf’jn

Let R%2 denote the four-dimensional Lorentz space endowed with linear coordinates
(Xo, X1, X2, X3) and the scalar produ¢t) given by—X3 — X2 + X2 + X2. The three-
dimensional anti-de Sitter spa(zéf of constant sectional curvaturel is defined as the
following hyper-quadric inR%2

H} = {X € R*?|(X, X) = -1}.

In Hf’ we may also introduce the corresponding four kinds of BCs denotdd; tily <
Jj < 4),whereL,, L, andL3 are SBCs and.4 is a TBC. In the following, all calculations
are parallel to the above sections.

Theorem 6.1. Let M andM™* be two immersed surfacesHtf. LetL;, - M - M* (1<
j<4)in H13 be one of the above BCs ashefinition 2.1 Then M andM* have the same
constant Gaussian curvature Where in(1) K = —1— (cosh?t/ sinh?l) andc = sinht;
(2) K = —1+ (sinh?z/sinh?l) andc = — coshr; (3) K = —1 + (sinh?t/sinh?) and
¢ = coshr; and(4) K = —1+ (sin?t/sin?l) andc = cosr.

Theorem 6.2. Suppose Mis animmersed time-like surface Withi—1— ( cosh?z/ sinh?[)
in H13. Given any unit space-like vectop € T,,M, po € M, which is not a principal
direction. Thenthere exist a unique space-like surfd¢avith K and the above SBLC; such
thatL1(po) = coshipo+ sinhlvg, where the BT i&? cosh + w? sinhl = o3 sinhl tanhz.

Theorem 6.3. Suppose M is an immersed space-l{ke time-like surface withk =
—1+(sinh2t/sinh?) in H3. Given any unit space-like vectog € T, M, po € M, which
is not a principal direction. Then there exist a unique spacef{likeime-like surfaceM*
with K and the above SBLC; (or L3) such thatL(po) (or L3(po)) = coshlpg + sinhlug,

where the BT i&? cosl + w? sinh! = w3 sinh! cothr.

Theorem 6.4. Suppose M is an immersed time-like surface Witk —1+ ( sin®z/ sin?l)
in Hf. Given any unit time-like vectarg € T,,M, po € M, which is not a principal

direction. Then there exist a unique time-like surfa¢é with K and the above TBTC 4
such thatL4(po) = coslpg + sinlvg, where the BT i! cosl + w3 sinl = w3 sini cotr.

Remark 6.5. In Hf, we also set up the Tchebyshev coordinates and discuss the explicit
forms of BTs. For time-like surface witk = —1+ p2 and imaginary principal curvatures,
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the Gauss equation igx — ayy = (1 — p?) sinha. Especially when time-like surface is
flat, i.e.,K = 0, it is a wave equation.
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